In vitro kidney tox systems with increased sensitivity and throughput evolving

human kidney cells > opossum kidney cells > NRK-52 cells

Do they reflect the in vivo situation?

How can we better capture kidney injury onset?
Reference molecules to build *in vitro* to *in vivo* correlation

- **Colistin sulfate**
 - used as a drug directly in Asia
 - available as USP material

- **Polymyxin B nonapeptide**
 - reported to be much safer in *in vitro* assays and in a dog *in vivo* study (AAC1989, p1428)
 - Synergistic (lowering MIC) with some other antibiotics (MurF, LpxC inhibitors, AAC (2009) 53, 3240-3247), PF1090; ICAAC 2011, A2-1170)
 - production/purification relatively straight forward

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colistin (Polymyxin E)</td>
<td>D-Leu⁶</td>
<td></td>
</tr>
<tr>
<td>Polymyxin B (PMB)</td>
<td>D-Phe⁶</td>
<td></td>
</tr>
<tr>
<td>Polymyxin B Nonapeptide (PMBN)</td>
<td>D-Phe⁶</td>
<td>H</td>
</tr>
</tbody>
</table>
In Vitro Safety Tools

In vitro HK2 kidney toxicity assay and microbiological activity

In vitro HK2 data indicate possible opportunities for improved renal tox profile while preserving MIC

In *vivo* translation?

Nonapeptide

PMB, Colistin

AstraZeneca
Choice of animal model:

Mouse: difficult to produce kidney lesions

Rat: kidney lesions reported for cumulative doses >37 mg/kg

Dog/monkey: animal welfare, translatability?
Translational Kidney Biomarkers
(beyond creatinine and BUN)

AZ is collaborating in a Predictive Safety Testing Consortium on nephrotoxicity. The working Group interacts with industry and regulatory bodies to facilitate biomarker qualification.

Goal: Gain experience assessing and interpreting novel kidney premonitory and diagnostic biomarker data in all preclinical repeat-dose in vivo studies
- KIM-1, Clusterin, NGAL (Lipocalin), Osteopontin*
- DMPK bioanalysis of tissue levels

*These biomarkers are qualified in rat but are being used routinely for other species by the industry, including humans. All 4 are premonitory

A, nephron segment-specific biomarkers; B, drugs that elicit site-specific tox
Nat Biotechnol 2010 28(5): 436
In Vitro to In Vivo Correlation

Biomarkers indicate kidney injury in colistin- but not PMBN-dosed animals in 7-day iv rat studies

- Unexpected \(^1\) lack of kidney histopathology for both colistin and PMBN
- 4 biomarker signals elevated @ day8 only for colistin
- no change in the Biomarkers Kim-1 and Lipocalin.
- No significant serum chemistry change

\(^1\) J. A. C. 2012, p. 452; AAC 2011, p. 4044
SC Dosing: Tolerability, Exposures & PK

Dose_group	Cmax (ug/ml)	Half-life (hrs)	AUC (hr*μg/mL)
0.5 mg/kg- IV | 0.57 | 0.8 | 0.98 |
5 mg/kg- SC | 1.96 | 1.34 | 10.32 |
10 mg/kg-SC | 3.64 | 1.88 | 26.86 |
20 mg/kg-SC | 7.33 | 2.75 | 79.13 |
40 mg/kg-SC | 13.16 | 3.31 | 170.85 |

IV dosing (60 min): 1 mg/Kg was not tolerated
SC dosing: Not tested beyond 40 mg/Kg

C_{max} and AUC differences do not explain the tolerability issues. SC dosing is better tolerated for colistin sulfate exposure exceeds iv > 10 fold.
Histamine response does not track with tolerability issues

Single IV Dose of Colistin
- Strong histamine response @ 1mg/kg
- Tolerability issues within a few minutes
- Rats do not tolerate 1mg/kg (<60 min)

Ascending IV Dose of Colistin Day 2
- Histamine response varies
- Rats tolerate 1 mg/kg

Single Subcutaneous Dose of Colistin
- High histamine levels sustained over 8h
- Rats tolerate high doses
2 Day SC Dosing in Rats with Colistin Sulfate & PMBN Indicates Differentiation in Renal Toxicity

Sc dosing combined with QID dosing adequate to induce lesions quickly

kidney lesions observed in Colistin group only

Differentiation between colistin & PMBN supports exploration of novel analogs

At 10x mag.:
- tubules in colistin-treated rats appeared plump with prominent pale, basophilic cytoplasm

At 20x mag.:
- colistin-treated rats:
 • mitotic figures (←)
 • Increased number of necrotic cells in tubular lumina (*)
 • affected tubules have sloughed epithelium and nuclei are irregular and hyperchromatic.

- In both colistin- and PMBN- treated rats, cytoplasmic vacuolization of tubules is more prominent than in controls.
Summary

- Next generation kidney injury biomarkers detect early onset of kidney injury and differentiate colistin from PMBN.
- Consistent with these findings, in vitro studies of human renal epithelial cells show higher sensitivity to colistin and polymyxin B than PMBN.
- Novel analogs show reduced toxicity in HK2 assay while maintaining microbiological activity.
- Tolerability issues cannot be explained by a simple histamine response.
- Subcutaneous dosing in rats increases exposures above those obtained for intravenous dosing.
- In a 2-day SC study, differentiation in the renal histopathology between colistin sulfate and PMBN is observable.
- These studies support that in vitro studies with human renal kidney cells can be used to assess the nephrotoxicity for novel analogs.
The Team

Aixiang Xue
Jennifer Sasaki
Mike Hale
Letitia Cheatham
Kevin, Sooben
Adam Shapiro
Valerie
Tyler Grebe
Pang Johnson
Matt Wagoner Laganas

Gunther Kern, Helena Kocis, Renu Singh, Boudewijn DeJonge

Natalie Keirstead
Patricia Bentley
Marie Blais
Paul Ciaccio
Anshul Gupta
Jennifer Harris
Abishek Sathe
Eric Miele

Mark Pietrus
Kumar Thakur
Frank McGrath
Crystal Brown